Search Journal-type in search term and press enter
Southwest Pulmonary and Critical Care Fellowships
In Memoriam
Social Media

Pulmonary

Last 50 Pulmonary Postings

(Click on title to be directed to posting, most recent listed first)

March 2025 Pulmonary Case of the Month: Interstitial Lung Disease of
   Uncertain Cause
December 2024 Pulmonary Case of the Month: Two Birds in the Bush Is
   Better than One in the Hand
Glucagon‐like Peptide-1 Agonists and Smoking Cessation: A Brief Review
September 2024 Pulmonary Case of the Month: An Ounce of Prevention
   Caused a Pound of Disease
Yield and Complications of Endobronchial Ultrasound Using the Expect
   Endobronchial Ultrasound Needle
June 2024 Pulmonary Case of the Month: A Pneumo-Colic Association
March 2024 Pulmonary Case of the Month: A Nodule of a Different Color
December 2023 Pulmonary Case of the Month: A Budding Pneumonia
September 2023 Pulmonary Case of the Month: A Bone to Pick
A Case of Progressive Bleomycin Lung Toxicity Refractory to Steroid Therapy
June 2023 Pulmonary Case of the Month: An Invisible Disease
February 2023 Pulmonary Case of the Month: SCID-ing to a Diagnosis
December 2022 Pulmonary Case of the Month: New Therapy for Mediastinal
   Disease
Kaposi Sarcoma With Bilateral Chylothorax Responsive to Octreotide
September 2022 Pulmonary Case of the Month: A Sanguinary Case
Electrotonic-Cigarette or Vaping Product Use Associated Lung Injury:
   Diagnosis of Exclusion
June 2022 Pulmonary Case of the Month: A Hard Nut to Crack
March 2022 Pulmonary Case of the Month: A Sore Back Leading to 
   Sore Lungs
Diagnostic Challenges of Acute Eosinophilic Pneumonia Post Naltrexone
Injection Presenting During The COVID-19 Pandemic
Symptomatic Improvement in Cicatricial Pemphigoid of the Trachea
   Achieved with Laser Ablation Bronchoscopy
Payer Coverage of Valley Fever Diagnostic Tests
A Summary of Outpatient Recommendations for COVID-19 Patients
   and Providers December 9, 2021
December 2021 Pulmonary Case of the Month: Interstitial Lung
   Disease with Red Knuckles
Alveolopleural Fistula In COVID-19 Treated with Bronchoscopic 
   Occlusion with a Swan-Ganz Catheter
Repeat Episodes of Massive Hemoptysis Due to an Anomalous Origin 
   of the Right Bronchial Artery in a Patient with a History
   of Coccidioidomycosis
September 2021 Pulmonary Case of the Month: A 45-Year-Old Woman with
   Multiple Lung Cysts
A Case Series of Electronic or Vaping Induced Lung Injury
June 2021 Pulmonary Case of the Month: More Than a Frog in the Throat
March 2021 Pulmonary Case of the Month: Transfer for ECMO Evaluation
Association between Spirometric Parameters and Depressive Symptoms 
   in New Mexico Uranium Workers
A Population-Based Feasibility Study of Occupation and Thoracic
   Malignancies in New Mexico
Adjunctive Effects of Oral Steroids Along with Anti-Tuberculosis Drugs
   in the Management of Cervical Lymph Node Tuberculosis
Respiratory Papillomatosis with Small Cell Carcinoma: Case Report and
   Brief Review
December 2020 Pulmonary Case of the Month: Resurrection or 
   Medical Last Rites?
Results of the SWJPCC Telemedicine Questionnaire
September 2020 Pulmonary Case of the Month: An Apeeling Example
June 2020 Pulmonary Case of the Month: Twist and Shout
Case Report: The Importance of Screening for EVALI
March 2020 Pulmonary Case of the Month: Where You Look Is 
   Important
Brief Review of Coronavirus for Healthcare Professionals February 10, 2020
December 2019 Pulmonary Case of the Month: A 56-Year-Old
   Woman with Pneumonia
Severe Respiratory Disease Associated with Vaping: A Case Report
September 2019 Pulmonary Case of the Month: An HIV Patient with
   a Fever
Adherence to Prescribed Medication and Its Association with Quality of Life
Among COPD Patients Treated at a Tertiary Care Hospital in Puducherry
    – A Cross Sectional Study
June 2019 Pulmonary Case of the Month: Try, Try Again
Update and Arizona Thoracic Society Position Statement on Stem Cell 
   Therapy for Lung Disease
March 2019 Pulmonary Case of the Month: A 59-Year-Old Woman
   with Fatigue
Co-Infection with Nocardia and Mycobacterium Avium Complex (MAC)
   in a Patient with Acquired Immunodeficiency Syndrome 
Progressive Massive Fibrosis in Workers Outside the Coal Industry: A Case 
   Series from New Mexico
December 2018 Pulmonary Case of the Month: A Young Man with
   Multiple Lung Masses
Antibiotics as Anti-inflammatories in Pulmonary Diseases
September 2018 Pulmonary Case of the Month: Lung Cysts
Infected Chylothorax: A Case Report and Review
August 2018 Pulmonary Case of the Month
July 2018 Pulmonary Case of the Month
Phrenic Nerve Injury Post Catheter Ablation for Atrial Fibrillation
Evaluating a Scoring System for Predicting Thirty-Day Hospital 
   Readmissions for Chronic Obstructive Pulmonary Disease Exacerbation
Intralobar Bronchopulmonary Sequestration: A Case and Brief Review

 

For complete pulmonary listings click here.

The Southwest Journal of Pulmonary and Critical Care publishes articles broadly related to pulmonary medicine including thoracic surgery, transplantation, airways disease, pediatric pulmonology, anesthesiolgy, pharmacology, nursing  and more. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

-------------------------------------------------------------------------------------

Thursday
Jun142012

Cough and Pleural Disease in a Burmese Immigrant – A Masquerader

George M. Solomon, MD1

Eric Schmidt, MD1,2

Randall Reves, MD3

Carolyn Welsh, MD1

 

Department of Medicine, Divisions of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver1

Denver Health Medical Center2

Denver Metro Tuberculosis Control Program, Denver Public Health Department3

 

Corresponding Author:         George M. Solomon, MD

                                          Research Building 2

                                          9th Floor12700 E. 19th Ave

                                          Aurora, Colorado 80045

                                          Phone 303-398-1392

                                          George.solomon@ucdenver.edu

Financial Disclosures: No authors report any financial conflicts to disclose

 

Abstract

We present a case of a 58 year old Burmese male who presented to our center with progressive pulmonary and constitutional symptoms after treatment for pulmonary tuberculosis. Our investigation revealed peripheral and bronchogenic eosinophilia and clinical features consistent with progressive pulmonary paragonimiasis. After serological confirmation of the diagnosis, the patient had resolution of symptoms with praziaquantel therapy for the condition.  This case highlights the importance of considering this diagnosis when there is a possibility of undercooked shellfish exposure especially in immigrants from endemic areas for paragonimiasis where raw shellfish is more commonly ingested.

Case Presentation 

A 58 year old Burmese male was referred for evaluation of cough and pleural abnormalities on a chest radiograph.  The patient had arrived in Boston as a Burmese refugee the previous year.  Upon arrival in the United States, he was found to have a right middle lobe infiltrate, multiple cavitary nodules on chest CT, three negative sputum AFB smears and 10 mm induration on Mantoux tuberculin skin testing.  He was treated with rifampin, isoniazid, pyrazinamide, and ethambutol for 2 months with resolution of the cavitary nodules but developed an increasing right pleural opacity. Sputum cultures were negative for mycobacteria.

He moved to Denver, Colorado where an additional four months of isoniazid and rifampin were completed for presumed culture negative pulmonary tuberculosis. At the end of treatment he noted an increase in his persistent cough and fatigue associated with low grade fevers.  A repeat chest radiograph now revealed a small right-sided pleural effusion (Figure 1).

Figure 1. Chest radiograph demonstrating right-sided small pleural effusion

Assessment at the pulmonary clinic revealed persistent cough and a 6.8 kg weight loss.  Physical examination was pertinent for a temperature of 99.0 ºF, dullness to percussion and crackles in the right lung.  The patient reported occasional tobacco use and reported occasional raw seafood consumption in Burma.  He denied other medical history at this time except for untreated hypertension. 

Laboratory investigation was pertinent for a white blood cell count of 10,000 per µl with a differential of 22% eosinophils and normal platelet and hemoglobin levels. Anti-nuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA), and rheumatoid factor levels as well as a comprehensive metabolic profile and coagulation labs were all normal. 

Computed tomography of the chest at the time of presentation to the pulmonary clinic compared to the one a year earlier in Boston are shown in Figure 2.

Figure 2. A. Computed Tomography image of the chest demonstrating right middle lobe opacification and pleural effusion at presentation to the pulmonary clinic. B. Computed Tomography image of the chest at time of initial treatment in Boston demonstrating right-sided cavitary disease and pleural process.

Fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) revealed 960 nucleated cells, 68% of which were eosinophils.  Routine cultures grew normal oral flora and were negative for actinomyces, fungi and mycobacteria.  Wet prep for oocysts and larvae was negative. 

Ultrasound revealed only a small loculated pleural effusion, precluding thoracentesis.

Because of suspicion for parasitic illness, a filarial antibody panel was also sent and was negative. Paragonimus antibody immunoblot assay was positive.

Case Follow-up

The patient was treated with praziquantel 25 mg/kg orally three times daily for 3 days with improvement in symptoms and radiographic abnormalities as show in Figure 3. 

Figure 3. Chest radiograph following treatment with praziquantel demonstrating resolution of resolving right-sided pleural effusion and right-sided infiltrates.

Discussion

Paragonimiasis results from infection by one of the more than fifty species of the genus paragonimus (most commonly P. westermanii).  There are approximately 2.5 million cases annually reported in endemic areas, mostly in Indo-China and sub-Saharan Africa.  In the western world, most cases are reported in immigrants from endemic regions where undercooked shellfish are culturally consumed.  Approximately 50-70% of infections are initially diagnosed as tuberculosis in the U.S. (1), as demonstrated in this case.  

The lifecycle of the organism begins with early ingestion and early disease characterized by cough, fever, and pleuritic chest pain resulting from a transdiaphragmatic spread of larvae into the pleural space from the abdomen.  Prominent features of this “early” disease are pneumothorax or pleural effusion and peripheral eosinophilia (2).  Additionally, transient pulmonary infiltrates may be observed. This presentation may help to explain the response of parenchymal abnormalities in response to the anti-tuberculosis treatments.  In fact, the “response” to treatment may have been a consequence of the natural history of early stage paragonimiasis. 

The failure of resolution of pleural disease in this case to anti-tuberculosis drugs should have alerted clinicians to consider alternative diagnoses.  The progressive pleural disease in this case while on anti-tuberculosis drugs highlights progression of paragonimiasis pulmonary disease.  “Late” stage lung disease results from mature fluke inhabitation in the lung parenchyma. During this phase, patients typically resolve their peripheral eosinophilia and fever but may have persistent dark brown hemoptysis.   Radiographic features in this stage are varied and include parenchymal mass-like lesions or chronic pleural lesions (2).

If paragonimiasis is suspected, diagnosis is most readily made by serological evaluation. Heretofore, microscopic evaluation of oocysts and larvae from sputum or BAL yielded a diagnosis in only 50-75% of cases (3).  Serological evaluations including immunoblot assays for P. Westermanii antibodies have a reported sensitivity of 96% and specificity of 99% (4) and ELISA-based assays have a reported sensitivity of 92% and specificity of 90% (5); thereby, these assays have therefore largely supplanted other microscopic evaluation given the superior diagnostic performance

Treatment regimens are nearly 100% effective in cure for pulmonary disease. Typical regimens include three days of praziquantel therapy at 25mg/kg given three times daily. It is additionally important to counsel patients and their families on avoidance of raw seafood as well as contact prophylaxis, as cross-contamination from soiled utensils can result in illness to others (6).  A recent case series of locally-acquired paragonimiasis from undercooked river shellfish in the U.S. acquired from undercooked shellfish in restaurants (7) further highlights the importance of considering this diagnosis especially if the history of potential exposure is substantiated, thus raising awareness of paragonimiasis infection as a potential public health hazard in food/beverage establishments. 

In summary, paragonimiasis is a relatively common infection in endemic areas of the world. Infection is often mistaken as tuberculosis in immigrants to the western world. However, knowledge of the clinicopathologic features of the disease should lead to appropriate consideration and treatment for at-risk patients. 

References

  1. Kagawa FT. Pulmonary paragonimiasis. Seminars in Respiratory Infections 1997;12:149-158.
  2. Mukae H, Taniguchi H, Matsumoto N, Iiboshi H, Ashitani J, Matsukura S, Nawa Y. Clinicoradiologic features of pleuropulmonary paragonimus westermani on Kyusyu Island, Japan. Chest 2001;120:514-520.
  3. Khan R, Sharma OP. Bronchial lavage in tropical pneumonias. Curr Opin Pulm Med 2007;13:225-229.
  4. Slemenda SB, Maddison SE, Jong EC, Moore DD. Diagnosis of paragonimiasis by immunoblot. Am J Trop Med Hyg 1988;39:469-471.
  5. Imai J. Evaluation of elisa for the diagnosis of paragonimiasis westermani. Trans R Soc Trop Med Hyg 1987;81:3-6.
  6. Johnson RJ, Jong EC, Dunning SB, Carberry WL, Minshew BH. Paragonimiasis: Diagnosis and the use of praziquantel in treatment. Reviews of infectious diseases 1985;7:200-206.
  7. Human paragonimiasis after eating raw or undercooked crayfish --- Missouri, July 2006-September 2010. MMWR 2010;59:1573-1576.

Reference as: Solomon GM, Schmidt E, Reves R, Welsh C. Cough and pleural disease in a Burmese immigrant-a masquerader. Southwest J Pulm Crit Care 2012;4:205-10. (Click here for a PDF version of the manuscript)

Saturday
Jun092012

Meta-Analysis of Self-Management Education for Patients with Chronic Obstructive Pulmonary Disease

Jessica Hurley, MD1

Richard D. Gerkin, MD1

Bonnie Fahy, RN, MN2

Richard A. Robbins, MD2* 

Good Samaritan Regional Medical Center1 and the Phoenix Pulmonary and Critical Care Research and Education Foundation2, Phoenix, AZ

 

Abstract

Background

Chronic obstructive pulmonary disease (COPD) is a common disease frequently associated with high use of health services. Self-management education is a term applied to programs aimed at teaching patients skills that promote the self-efficacy needed to carry out medical regimens specific to control their disease. In COPD, the value of self-management education is not yet clear and a recent trial was terminated early because of excess mortality in the intervention group.

Objectives

The objective of this meta-analysis was to assess the settings, methods and efficacy of COPD self-management education programs on patient outcomes and healthcare utilization.

Selection criteria

Randomized controlled trials of self-management education in patients with COPD were identified. Studies focusing primarily on comprehensive pulmonary rehabilitation (education and exercise) and studies without usual care as a control group were excluded.

Search strategy

We searched PubMed (January 1985 to May 2012) as well as other meta-analysis and reviews.

Data collection and analysis

Two reviewers (JH and RAR) independently assessed study quality and extracted data. Investigators were contacted for additional information.

Main results

The reviewers included 3 group comparisons drawn from 12 trials. The studies showed no significant change in mortality, with one study being an outlier compared to the others.  However, the meta-analysis revealed a reduction in the probability of hospital admission among patients receiving self-management education compared to those receiving usual care.

Conclusions

It is likely that self-management education is associated with a reduction in hospital admissions with no change in mortality. However, because of heterogeneity in interventions, study populations, follow-up time, and outcome measures, data are still insufficient to formulate clear recommendations regarding the preferred curriculum and delivery method of self-management education programs in COPD.

Introduction

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and the only one of the top 5 causes of death that is increasing (1).  The economic and social burden of the disease is immense. The patient usually suffers progressive disability with frequent hospitalizations and emergency room visits. Hospitalizations and emergency room visits account for much of the health care costs from COPD, and therefore, strategies to decrease the these outcomes have received considerable attention (2,3). 

One strategy to improve COPD care has been self-management education, a term applied to any formalized patient education program aimed at increasing knowledge and teaching skills that increase self-efficacy, thus improving collaboration with their healthcare provider to optimally manage patient care. Similar strategies have been successful in other chronic diseases (4-6). However, the effects of self-management programs in COPD, although encouraging, are still unclear (7). Furthermore, a recent trial was terminated prior to enrollment of the planned number of subjects because of excess mortality in the intervention group receiving self-management education (8).

Prompted by the surprising result of an increase in mortality, we reexamined health care outcomes for COPD self-management education by meta-analysis. We found no significant change in mortality but significant reductions in hospitalizations.

Methods

Criteria for considering studies for this review

Types of Studies: Only randomized controlled trials evaluating the effect of self-management education on patients with COPD were used.  Every study included some form of patient education that addressed COPD disease self-management. For inclusion, the study must also include a control group that received usual care and were excluded from the interventional self-management education.  Studies prior to 1985 were not included since medical management for COPD differed from current practice guidelines. 

Types of study participants: Only patients with a clinical diagnosis with COPD were included.  Spirometry was not required to be reported in the study to determine the diagnosis of COPD if the patients admitted had previously been diagnosed with COPD by the referring physician. Patients with a sole diagnosis of asthma or reactive airway disease were excluded from this review.

Types of interventions: In order to qualify as an intervention, the primary goal of the study had to center on improving the patient’s fundamental knowledge and understanding of the disease process and self-management of COPD. The methods of information delivery were highly variable and included written, verbal, visual, and/or audio communication.

Types of outcomes measured: The outcomes identified in studies that were included in this review include mortality, hospital admissions, and emergency room visits.

Search methods

Two separate reviewers (JH, RAR) used systematic searches via the information databases including PubMed.  The terms used to search included “COPD” in addition to one of the following words or phrases: “educat*” or “education” or “patient-educat*” or “patient-education” or “patient educat*” or “patient-education” or “self-manag*” or “self-management” or “self manag*” or “self management” or “disease manag*” or “disease management”.  The searches are current through May of 2012. 

Data collection and analysis

Selection of studies: The two reviewers placed successfully retrieved articles using the above search criteria into 3 categories:

  1. Include: RCT evaluating COPD patients and self-management education versus usual care
  2. Possibly Include: RCT evaluating COPD patients and disease education but more information needed beyond what is available in the abstract
  3. Exclude: not an RCT, not focused on self-management of COPD or did not include usual care comparison or primary outcome focused solely on pulmonary rehabilitation

Data extraction: Information from the accepted studies was collected and included: number of patients in the control and interventional groups, type of intervention used (i.e. disease education, medication instructions, pharmacy action plans), length of study until primary outcome, mortality of each group, respiratory-related hospital admissions, and respiratory-related ED visits.

Data analysis:

Publication bias:  Funnel plots were constructed to examine the pattern of study effects by study size.  Outliers on the plot with respect to a 95% confidence interval were also determined.

Assessment of heterogeneity: The I square statistic was used to examine variability in study results.  If I square was greater than 20%, sensitivity analysis was conducted to determine, if possible, the source of heterogeneity.

Data synthesis:  Continuous outcomes were analyzed using weighted mean difference with 95% confidence intervals.  For dichotomous outcomes, a pooled odds ratio was used.  A fixed effects model was used if I square was less than 20%.  A random effects model, using the technique of DerSimonian and Laird (20), was used if I square was greater than 20 %.

RevMan 5.1. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011) was used for the analysis.

Results

Results of the search: Searches identified 1904 titles and abstracts that were screened to identify 71 potentially relevant articles about self-management education in COPD. Full-text versions of these papers were obtained, and independently assessed by two reviewers (JH and RAR). These were searched for data on mortality, hospitalizations and emergency room (ER) visits.  A total of 12 trials were identified which met the review entry criteria (8-19).

Subjects: A total of 2476 patients were randomized in the 12 studies. The studies were heterogenous with some recruiting patients from outpatient clinics, some from general practice, some from inpatient hospital admissions for COPD exacerbations and some from several sources.

Interventions: All 12 studies described COPD self-management education compared with usual care. The educational delivery mode consisted of group education or individual education. Educational topics varied, as did the discipline of the provider. The follow-up time was variable ranging from 2-12 months.

Comparisons: Twelve studies that compared self-management education with usual care have been included in this review. In one study two intervention groups and one usual care group were used (11). The intervention groups were considered sufficiently similar to be combined.

Outcomes: Reported outcome categories were variable. Studies included in the review identified mortality (10 studies), respiratory-related hospital admissions (9 studies) and emergency room (ER) visits (4 studies).

Missing data: Additional data was requested from the two most recent studies (8,9). A reply was received from one author and is listed in the acknowledgement section.

Mortality: Ten studies reporting mortality were included in the meta-analysis (8-15,18,19). There was no significant difference in mortality between the usual care and intervention groups (OR 0.76; 95% CI (0.44 to 1.30); Figure 1; p=0.31).

Figure 1.  Forest plot of mortality

The level of statistical heterogeneity for this outcome (I square = 54%) may be related to the outlying effect from the report by Fan et al. (8), since its removal led to a lower I square statistic (0%). Also removal of the study resulted in a statistically significant improvement in mortality rate (OR 0.64; 95% CI 0.46 to 0.90)

Respiratory-related Hospital admissions: Nine studies reporting COPD-related hospital admissions were included in the meta-analysis (8-11,13-16,18). There was little heterogeneity present (I square = 0%).  There was a clinically and statistically significant reduction of the probability of at least one hospital admission among patients receiving self-management education compared to those receiving usual care (OR 0.76; 95% CI (0.65 to 0.88); p< 0.001; Figure 2).

 

Figure 2. Forest plot of pulmonary hospitalization

Emergency room visits: Four trials that reported the effect of self-management education on Emergency Room (ER) visits related to COPD were included in the meta-analysis (9,11,12,17). Although the level of heterogeneity was high (I square = 83%), removal of any one study had little effect on this variability.  There was no significant difference between patients receiving self-management education compared to those receiving usual care in the average number of respiratory-related emergency room visits (Mean difference 0.12/pt-yr; 95% CI (-0.21 to 0.46): p=0.47; Figure 3).

Figure 3. Forest plot of pulmonary emergency room visits/pt-yr.

Discussion

This meta-analysis systematically evaluated comparisons of self-management education for patients with COPD compared to usual care. The review was prompted by a recent report of increased mortality in patients receiving COPD education (8). Meta-analysis did not confirm an increase in mortality and determined the recent study had significant heterogeneity compared to the other studies.  We confirm a previous meta-analysis which demonstrated a significant decrease in COPD-related hospitalizations in the intervention groups (7). 

Self-management education has been successfully utilized in a number of chronic diseases (4-6). Education including the use of pre-defined action plans may lead to faster and more frequent treatment of COPD exacerbations, thus resulting in the reduction in hospitalizations. Although we did not review cost-effectiveness, hospitalizations represent the major cost of COPD care (2,3). Therefore, self-management education is likely cost-effective. In support of this concept, a recent cost-effective analysis of one successful self-management education program revealed an average cost savings of $593 per patient (21).

This review has a number of limitations. First, there was variation in the intervention content and delivery. Some studies included action plans in the self-management curriculum and others incorporated additional components of pulmonary rehabilitation including exercise. The type and intensity of education delivery varied from one-on-one instruction, group interaction and the distribution of written material.

Second, the COPD-population was defined in varying detail, with studies using very diverse inclusion criteria. As a result, heterogeneity in disease severity was present. This may explain some of the differing results, including the increase in mortality observed in the recently published study (8).

Third, the studies assessed a broad spectrum of outcome measures and length of follow-up. Often meta-analyses could not be performed because of different outcome measures utilized or different methodology used to calculate the same outcome (e.g. ER visits). This lack of data consistency hampered statistical combination and therefore may have biased the estimates in the review.  Since self-management programs are intended to achieve behavioral changes, follow-up should ideally be long term and this was not the case in all studies.

The final limitation was that knowledge of one’s disease does not necessarily lead to behavioral change. It is unclear at this point if the educational programs lead to an increase in healthy behaviors.

The results of the study by Fan et al. (8) showing an increase in mortality is not confirmed by this meta-analysis. Fan’s manuscript describes the BREATH trial which was a randomized, controlled, multi-center trial performed at 20 VA medical centers comparing an educational comprehensive care management program to guideline-based usual care for patients with chronic obstructive pulmonary disease. The intervention included COPD education during 4 individual and 1 group sessions, an action plan for identification and treatment of exacerbations, and scheduled proactive telephone calls for case management. It is unclear why this education and self-management which is not very dissimilar from other studies would increase mortality. Although the patients were recruited after they were hospitalized, and therefore, likely had more advanced COPD than in some other studies, this alone should not explain excess mortality in the intervention group. An accompanying editorial by Pocock in the same issue of the Annals of Internal Medicine identified no apparent reason for the increase in mortality and points out that education seems an unlikely cause (22). We also have been unable to identify an explanation for the increase and agree with Pocock that the reason seems most likely secondary to statistical chance. The present meta-analysis is consistent with this concept.

For future research of the efficacy of self-management education of COPD patients in improving patient outcomes and decreasing health care utilization, it is important to create more homogeneity in the design of the studies (educational curriculum, demographics, outcome measures and follow-up period). The effectiveness of the individual components of self-management education programs (i.e., action plans, exercise programs) should also be evaluated.

From this meta-analysis, we have shown that self-management education is associated with a reduction in hospital admissions, with no indication for detrimental effects in other outcome parameters. This would seem sufficient to justify a recommendation of self-management education in COPD. However, due to diversity in interventions, study populations, follow-up time, and outcome measures, data are still insufficient to formulate clear recommendations regarding the form and content of self-management education programs in COPD.

Acknowledgements

We are grateful to Kathryn Rice for her assistance in obtaining additional data from her study (9).

References

  1. Akinbami LJ, Liu X. Chronic obstructive pulmonary disease among adults aged 18 and over in the United States, 1998-2009. NCHS Data Brief 2011;63:1-8.
  2. Toy EL, Gallagher KF, Stanley EL, Swensen AR, Duh MS. The economic impact of exacerbations of chronic obstructive pulmonary disease and exacerbation definition: a review. COPD 2010;7:214-28.
  3. Hilleman DE, Dewan N, Malesker M, Friedman M. Pharmacoeconomic evaluation of COPD. Chest 2000;118:1278-85.
  4. Ofman JJ, Badamgarav E, Henning JM, Knight K, Gano AD, Jr., Levan RK, et al. Does disease management improve clinical and economic outcomes in patients with chronic diseases? A systematic review. Am J Med 2004;117:182-92.
  5. Gwadry-Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med 2004;164:2315-20.
  6. Jovicic A, Holroyd-Leduc JM, Straus SE. Effects of self-management intervention on health outcomes of patients with heart failure: a systematic review of randomized controlled trials. BMC Cardiovasc Disord 2006;6:43.
  7. Effing T, Monninkhof EM, van der Valk PD, van der Palen J, van Herwaarden CL, Partidge MR, Walters EH, Zielhuis GA. Self-management education for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007;17:CD002990.
  8. Fan VS, Gaziano JM, Lew R, et al. A comprehensive care management program to prevent chronic obstructive pulmonary disease hospitalizations: a randomized, controlled trial. Ann Intern Med 2012;156:673-83.
  9. Rice KL, Dewan N, Bloomfield HE, Grill J, Schult TM, Nelson DB, Kumari S, Thomas M, Geist LJ, Beaner C, Caldwell M, Niewoehner DE. Disease management program for chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med. 2010;182:890-6.
  10. Boxall A, Barclay L, Sayers A, Caplan GA. Managing chronic obstructive pulmonary disease in the community. A randomized controlled trial of home-based pulmonary rehabilitation for elderly housebound patients. J Cardiopulm Rehabil 2005;25:378–85.
  11. Coultas D, Frederick J, Barnett B, Singh G, Wludyka P. A randomized trial of two types of nurse-assisted home care for patients with COPD. Chest 2005;128:2017–24.
  12. Martin IR, McNamara D, Sutherland FR, Tilyard MW, Taylor DR. Care plans for acutely deteriorating COPD: a randomized controlled trial. Chronic Respiratory Disease 2004;1:191–5.
  13. Rea H, McAuley S, Stewart A, Lamont C, Roseman P, Didsbury P. A chronic disease management programme can reduce days in hospital for patients with chronic obstructive pulmonary disease. Intern Med J 2004;34:608–14.
  14. Bourbeau J, Julien M, Maltais F, et al. Reduction of hospital utilization in patients with chronic obstructive pulmonary disease: a disease specific self-management intervention. Arch Intern Med 2003;163:585–91.
  15. Monninkhof E, van der Valk P, van der Palen J, van Herwaarden C, Zielhuis G. Effects of a comprehensive self-management programme in patients with chronic obstructive pulmonary disease. Eur Respir J 2003;22:815–20.
  16. Gallefoss F, Bakke PS, Rsgaard PK. Quality of life assessment after patient education in a randomized controlled study on asthma and chronic obstructive pulmonary disease. Am J Respir Critical Care Med 1999;159:812–7.
  17. Gourley GA, Portner TS, Gourley DR, et al. Humanistic outcomes in the hypertension and COPD arms of a multicenter outcomes study. J Am Pharm Assoc 1998;38:586–597.
  18. Littlejohns P, Baveystock CM, Parnell H, Jones P. Randomised controlled trial of the effectiveness of a respiratory health worker in reducing impairment, disability, and handicap due to chronic airflow limitation.  Thorax 1991;46:559–64.
  19. Cockcroft A, Bagnall P, Heslop A, et al.Controlled trial of respiratory health worker visiting patients with chronic respiratory disability. BMJ (Clin Res Ed) 1987;294:225–8.
  20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
  21. Dewan NA, Rice KL, Caldwell M, Hilleman DE. Economic evaluation of a disease management program for chronic obstructive pulmonary disease. COPD 2011;8:153-9.
  22. Pocock SJ. Ethical dilemmas and malfunctions in clinical trials research. Ann Intern Med 2012;156:746-747.

Reference as: Hurley J, Gerkin RD, Fahy B, Robbins RA. Meta-analysis of self-management education for patients with chronic obstructive pulmonary disease. Southwest J Pulm Crit Care 2012;4:194-202. (Click here for a PDF version of the manuscript)

For the accompanying editorial "A Little Knowledge is a Dangerous Thing" click here.

Friday
Jun012012

June 2012 Pulmonary Case of the Month: What’s a Millet Seed Look Like?

Alexis Christie, MD

Robert Viggiano, MD

Lewis J. Wesselius, MD

 

Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ

 

History of Present Illness

A 32 year old woman presents with a week long history of dyspnea, cough, fatigue, tiredness and pruritis. She has a past medical history (PMH) of Stage IIB, nodular sclerosing Hodgkin’s disease diagnosed in January, 2011. She underwent several cycles of chemotherapy and eventually an autologous stem cell transplant in January, 2012. Her current medications include:

  • Acyclovir 800mg bid
  • Ativan 0.5mg q4h/ prn
  • Hydromorphone 8mg q4h/ prn
  • Atarax 100mg q6h/ prn
  • Compazine 10mg q6h/ prn

She had just finished a course of levofloxacin.

PMH, SH and FH

As above. She is a life-long nonsmoker and has no history of lung disease.

Physical Examination

Her physical examination was normal.

Chest X-ray

Her chest x-ray was interpreted as unchanged from previous examinations. 

Which of the following are indicated?

  1. Thoracic CT scanning
  2. PET scanning
  3. Empiric treatment with broad spectrum antibiotics
  4. All of the above

Reference as: Christie A, Viggiano R, Wesselius LJ. June 2012 pulmonary case of the month: what's a millet seed look like? Southwest J Pulm Crit Care 2012;4:182-8. (Click here for a PDF version of the case)

Friday
May042012

May 2012 Pulmonary Case of the Month: Things Are Not Always as They Seem

Lewis J. Wesselius, MD

 

Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ

 

History of Present Illness

A 69 year old woman was seen for side effects of corticosteroids. She is a winter visitor to Arizona. She was hospitalized in March 2008 with increased dyspnea and cough and had an abnormal CT chest. A VATS lung biopsy was performed. The pathology of the lung biopsy interpreted as bronchiolitis obliterans. She was started on prednisone 60 mg/day.

Subsequently, she returned to Minnesota and was seen by rheumatologist with a diagnosis made of possible rheumatoid arthritis. She was treated with methotrexate (12.5 mg weekly) and continued prednisone at 20 mg/day from 2008 to 2011.  At that time a question was raised of methotrexate lung toxicity and it was stopped but she continued on prednisone 20 to 40 mg/day.  She is currently having issues with steroid side effects and seen for a second opinion.

PMH, SH and FH

She has a history of knee and other joint pains.  She had knee replacement surgery in Jan 2008 with worsening of her dyspnea and cough.  She has a history of diabetes which was apparently induced by the corticosteroids. Her current medications include prednisone 20 mg/day, insulin, metformin, lovastatin. She is a former smoker with 25 pack-years but quit 25 years ago. She has no family history of lung disease.

Physical Examination

She was an obese woman appearing somewhat Cushingoid in no acute distress. On chest auscultation she had diminished breath sounds but no crackles or wheezes. Examination of her joints revealed no abnormalities. The remainder of her physical examination was normal.

Chest X-ray

Her chest x-ray was interpreted as normal.

Which of the following are indicated?

  1. Pulmonary function testing
  2. Pulmonary CT scanning
  3. Rheumatologic evaluation
  4. Repeat of open lung biopsy
  5. All of the above

Reference as: Wesselius LJ. May 2012 pulmonary case of the month: things are not always as they seem. Southwest J Pulm Crit Care 2012;4:142-8. (Click here for a PDF version of the case)

Saturday
Apr212012

April 2012 Pulmonary Case of the Month: Could Have Fooled Me!

Bridgett A. Ronan, MD

Robert Viggiano, MD

Lewis J. Wesselius, MD

 

Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ

 

History of Present Illness

A 60 year old man was seen by his primary care physician with cough for 2 weeks which was dry and worse with deep breathing. He had been exposed to smoke from industrial storage fire just prior to the onset of his cough. He had developed fever for the past 3 days.

PMH, SH and FH

He has a history of osteopenia and was found to have a +PPD in high school for which he was never treated with isoniazid. Originally from New York he has lived in Arizona for 14 years. He was a former smoker having a 45 pack-year history having quit in 2007. He drives a delivery truck. His sister had tuberculosis which was treated and his father has emphysema.

Physical Examination

He had mild rhonchi in the right upper lung field. Otherwise, the physical exam was unremarkable.

Laboratory and Chest X-ray

A CBC was performed which revealed a hemoglobin of 11.7 g/dL, white blood cell (WBC) count of 11.9 X 1000 cells/ml with 79% neutrophils, and a platelet count of 337 X 1000/mL. Coccidioidomycosis serologies were drawn. A chest x-ray was taken (Figure 1).

Figure 1. Chest x-ray taken by the patient’s primary care physician which shows bilateral lung consolidations with multiple poorly defined bilateral lung nodules.

Considerations at this point include:

  1. Community acquired pneumonia
  2. Coccidioidomycosis
  3. Tuberculosis
  4. Pneumonitis from smoke inhalation
  5. Pulmonary embolism
  6. All of the above

Reference as: Ronan BA, Vigianno R, Wesselius LJ. April 2012 pulmonary case of the month: could have fooled me! Southwest J Pulm Crit Care 2012;4:122-9. (Click here for a PDF version of the case)