Search Journal-type in search term and press enter
Southwest Pulmonary and Critical Care Fellowships

Critical Care

Last 50 Critical Care Postings

(Most recent listed first. Click on title to be directed to the manuscript.)

October 2024 Critical Care Case of the Month: Respiratory Failure in a
   Patient with Ulcerative Colitis
July 2024 Critical Care Case of the Month: Community-Acquired
   Meningitis
April 2024 Critical Care Case of the Month: A 53-year-old Man Presenting
   with Fatal Acute Intracranial Hemorrhage and Cryptogenic Disseminated
   Intravascular Coagulopathy
Delineating Gastrointestinal Dysfunction Variants in Severe Burn Injury
   Cases: A Retrospective Case Series with Literature Review
Doggonit! A Classic Case of Severe Capnocytophaga canimorsus Sepsis
January 2024 Critical Care Case of the Month: I See Tacoma
October 2023 Critical Care Case of the Month: Multi-Drug Resistant
   K. pneumoniae
May 2023 Critical Care Case of the Month: Not a Humerus Case
Essentials of Airway Management: The Best Tools and Positioning for 
   First-Attempt Intubation Success (Review)
March 2023 Critical Care Case of the Month: A Bad Egg
The Effect of Low Dose Dexamethasone on the Reduction of Hypoxaemia
   and Fat Embolism Syndrome After Long Bone Fractures
Unintended Consequence of Jesse’s Law in Arizona Critical Care Medicine
Impact of Cytomegalovirus DNAemia Below the Lower Limit of
   Quantification: Impact of Multistate Model in Lung Transplant Recipients
October 2022 Critical Care Case of the Month: A Middle-Aged Couple “Not
   Acting Right”
Point-of-Care Ultrasound and Right Ventricular Strain: Utility in the
   Diagnosis of Pulmonary Embolism
Point of Care Ultrasound Utility in the Setting of Chest Pain: A Case of
   Takotsubo Cardiomyopathy
A Case of Brugada Phenocopy in Adrenal Insufficiency-Related Pericarditis
Effect Of Exogenous Melatonin on the Incidence of Delirium and Its 
   Association with Severity of Illness in Postoperative Surgical ICU Patients
Pediculosis As a Possible Contributor to Community-Acquired MRSA
   Bacteremia and Native Mitral Valve Endocarditis
April 2022 Critical Care Case of the Month: Bullous Skin Lesions in
   the ICU
Leadership in Action: A Student-Run Designated Emphasis in
   Healthcare Leadership
MSSA Pericarditis in a Patient with Systemic Lupus
   Erythematosus Flare
January 2022 Critical Care Case of the Month: Ataque Isquémico
   Transitorio in Spanish 
Rapidly Fatal COVID-19-associated Acute Necrotizing
   Encephalopathy in a Previously Healthy 26-year-old Man 
Utility of Endobronchial Valves in a Patient with Bronchopleural Fistula in
   the Setting of COVID-19 Infection: A Case Report and Brief Review
October 2021 Critical Care Case of the Month: Unexpected Post-
   Operative Shock 
Impact of In Situ Education on Management of Cardiac Arrest after
   Cardiac Surgery
A Case and Brief Review of Bilious Ascites and Abdominal Compartment
   Syndrome from Pancreatitis-Induced Post-Roux-En-Y Gastric Remnant
   Leak
Methylene Blue Treatment of Pediatric Patients in the Cardiovascular
   Intensive Care Unit
July 2021 Critical Care Case of the Month: When a Chronic Disease
   Becomes Acute
Arizona Hospitals and Health Systems’ Statewide Collaboration Producing a 
   Triage Protocol During the COVID-19 Pandemic
Ultrasound for Critical Care Physicians: Sometimes It’s Better to Be Lucky
   than Smart
High Volume Plasma Exchange in Acute Liver Failure: A Brief Review
April 2021 Critical Care Case of the Month: Abnormal Acid-Base Balance
   in a Post-Partum Woman
First-Attempt Endotracheal Intubation Success Rate Using A Telescoping
   Steel Bougie 
January 2021 Critical Care Case of the Month: A 35-Year-Old Man Found
   Down on the Street
A Case of Athabaskan Brainstem Dysgenesis Syndrome and RSV
   Respiratory Failure
October 2020 Critical Care Case of the Month: Unexplained
   Encephalopathy Following Elective Plastic Surgery
Acute Type A Aortic Dissection in a Young Weightlifter: A Case Study with
   an In-Depth Literature Review
July 2020 Critical Care Case of the Month: Not the Pearl You Were
   Looking For...
Choosing Among Unproven Therapies for the Treatment of Life-Threatening
   COVID-19 Infection: A Clinician’s Opinion from the Bedside
April 2020 Critical Care Case of the Month: Another Emerging Cause
   for Infiltrative Lung Abnormalities
Further COVID-19 Infection Control and Management Recommendations for
   the ICU
COVID-19 Prevention and Control Recommendations for the ICU
Loperamide Abuse: A Case Report and Brief Review
Single-Use Telescopic Bougie: Case Series
Safety and Efficacy of Lung Recruitment Maneuvers in Pediatric Post-
   Operative Cardiac Patients
January 2020 Critical Care Case of the Month: A Code Post Lung 
   Needle Biopsy
October 2019 Critical Care Case of the Month: Running Naked in the
   Park

 

For complete critical care listings click here.

The Southwest Journal of Pulmonary and Critical Care publishes articles directed to those who treat patients in the ICU, CCU and SICU including chest physicians, surgeons, pediatricians, pharmacists/pharmacologists, anesthesiologists, critical care nurses, and other healthcare professionals. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

------------------------------------------------------------------------------------

Friday
Apr102020

Choosing Among Unproven Therapies for the Treatment of Life-Threatening COVID-19 Infection: A Clinician’s Opinion from the Bedside

Robert A. Raschke, MD

HonorHealth Scottsdale Osborn Medical Center

Scottsdale, AZ USA

We are clearly in unprecedented times. As clinicians watch patients die from COVID-19 infection in the ICU, many feel they cannot wait for clinical trials to prove that various proposed therapies are efficacious. Treatments for which any rationale suggest the possibility of benefit are being administered to patients and the literature abounds with reports of case series or poorly-designed observational trials in which small numbers of patients seem to have favorable outcomes when given these unproven therapies (1). In many cases, these reports are made globally available via social networking without the benefit of peer-review or are being published despite severe methodological flaws that would not have been acceptable prior to the COVID-19 outbreak. 

Standard therapy for COVID-19 has recently been published by the Surviving Sepsis Campaign, which have taken a conservative, evidence-based approach (2). But many clinicians are not able to maintain such equipoise in the face of catastrophe. Therefore, I propose an approach to consideration of bedside implementation of unproven therapies for life-threatening COVID-19 for comment and criticism. None of the therapies discussed below have even marginally-acceptable empirical evidence of clinical benefit in patients with COVID-19, so let us put critical appraisal of the literature aside for the moment, and accept that we cannot evaluate these therapies using the normal rules of evidence-based practice (3), application of which would exclude all from further consideration were this any other disease than COVID-19.

I will focus on four unproven therapies that are currently being given to patients with COVID-19 infection: hydroxychloroquine (4), tissue plasminogen activator (tPA) and heparin for presumed pulmonary microthrombosis (5), immunosuppressive treatment of “cytokine storm” (6), and transfusion of convalescent serum (7).

I based my opinions on these four unproven therapies on the following principles:

  1. COVID-19 is a viral pneumonia. Although it may prove to have some distinctive features, it is likely to be similar to other viral pneumonias (such as SARS CoV-1, MERS, and H1N1 influenza) in terms of its clinical manifestations and response to therapy. We are more likely to gain helpful insights by looking at previous clinical data related to viral pneumonia than to data regarding various noninfectious entities such as high-altitude pulmonary edema or pulmonary venous occlusive disease, as some authors have suggested. COVID-19 viral pneumonia is unlikely, a priori, to respond to therapies that have never shown clinical benefit in the treatment of other viruses, particularly viral pneumonias.
  2. Demonstration of in-vitro activity rarely translates into clinical efficacy (8,9). In-vitro activity should be a basis for clinical trials, not bedside implementation.
  3. If unproven therapies are to be given, their safety must be an important consideration. First do no harm.
  4. We should be willing to apply any treatment recommendation we make for patients to ourselves or beloved family members.

Based on these principles, I propose the following:

Hydroxychloroquine. The non-specific anti-viral properties of chloroquine and hydroxychloroquine were demonstrated in cell cultures 40 years ago. Although active in vitro against Dengue, HIV, Ebola, Influenza and other viruses, this has never convincingly translated into clinical effectiveness (9). A large cohort study focusing on prevention of influenza pneumonia included over 4000 patients receiving HCQ, and showed that they had an increased risk of hospitalization for pneumonia compared to controls (10). Given this long track record, it seems unlikely that HCQ will suddenly be found to have clinical anti-viral benefit in 2020. When it is nevertheless given, care should be exercised to monitor QTc, especially if used in conjunction with other QTc-prolonging drugs like azithromycin and/or in patients with cardiomyopathy.

tPA and heparin. A high incidence of venous thromboembolism has been observed in some cohorts of COVID-19 patients, as has previously been described in patients with H1N1 pneumonia (11).  Standard thromboprophylaxis should be employed and venous thromboembolism should be diagnosed and treated in patients with COVID-19 infection. However, some clinicians are administering tPA and therapeutic-dose heparin to patients with COVID-19 and elevated D-dimer in the absence of documented DVT or PE, based on the theory that these patients have microvascular thrombosis requiring treatment. Several large multicenter RCTs examined the use of human activated protein C (Xigris®) to prevent/treat microvascular thrombosis in patients with severe sepsis and convincingly demonstrated no clinical benefit (12). There is no other infectious disease for which the use of tPA or treatment-dose heparin has been proven to be clinically beneficial in the absence of standard indications related to documented venous thromboembolism. Lytic/antithrombotic therapy has a relatively high potential for causing life-threatening hemorrhage. In my opinion, it should not be employed without support from well-designed clinical trials. 

Cytokine Storm or HLH. The terms cytokine storm and hemophagocytic lymphohistiocytosis (HLH) have been used to describe similar (perhaps identical) maladaptive immune responses to viral infections. HLH has been well-described in H1N1 pneumonia, SARS-CoV-1 and MERS. There is a rich history of (mostly) observational clinical research supporting the use of immunosuppressive therapies including steroids, anakinra and tocilizumab to treat HLH secondary to viral infection (13). Although immunosuppression can be associated with life-threatening secondary opportunistic infections, treating secondary HLH in selected patients is an approach with a long track record and could be considered standard therapy in Covid19 patients fulfilling HLH diagnostic criteria.

Convalescent Serum. The use of convalescent serum is supported by low-quality observational data going back over 100 years. Although never proven effective in well-designed clinical trials, prior reports in patients with Spanish influenza, SARS-CoV-1 and H1N1 all suggest potentially significant reductions in mortality with acceptable safety (14-16). This therapy is more difficult to operationalize, requiring (expedited) FDA approval, collection, processing and testing of neutralizing antibody titers by a licensed blood bank (17), however based on the principles outlined above, its benefit/harm ratio seems to support its use as an investigational therapy in patients with life-threatening COVID-19.

References

  1. Booth CM, Tannock IF. Randomised controlled trials and population-based observational research: partners in the evolution of medical evidence. Br J Cancer 2014;110:551-5. [CrossRef] [PubMed]
  2. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med. 2020 Mar 27. [Epub ahead of print]. [CrossRef] [PubMed]
  3. Guyatt GH, Sackett DL, Cook DJ. Users' guides to the medical literature. II. How to use an article about therapy or prevention. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA. 1993 Dec 1;270(21):2598-601. [CrossRef] [PubMed]
  4. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial [published online ahead of print, 2020 Mar 20]. Int J Antimicrob Agents. 2020;105949. [CrossRef] [PubMed]
  5. Wang J., Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tpa) treatment for COVID19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020 (in press). [CrossRef] [PubMed]
  6. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-4.[CrossRef] [PubMed]
  7. Duan K, Liu B, Cesheng L, Zhang H, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020 Apr 6. pii: 202004168. [CrossRef] [PubMed]
  8. Seyhan, A.A. Lost in translation: the valley of death across preclinical and clinical divide - identification of problems and overcoming obstacles. Transl Med Commun. 2019;4:18. [CrossRef]
  9. Dyall J, Gross R, Kindrachuk J, et al. Middle east respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs. 2017;77:1935-66. [CrossRef] [PubMed]
  10. Vanasse A, Courteau J, Chiu Y, Cantin A, Leduc R. Hydroxychloroquine: an observational cohort study in primary and secondary prevention of pneumonia in an at-risk population. MedRxIv .April 10, 2020. [CrossRef]
  11. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD. Pandemic H1N1 influenza infection and vascular thrombosis.Clin Infect Dis. 2011 Jan 15;52(2):e14-7.
  12. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012 May 31;366(22):2055-64. [CrossRef] [PubMed]
  13. Yildiz H, Van Den Neste E, Defour JP, Danse E, Yombi JC. Adult haemophagocytic lymphohistiocytosis: a review. QJM. 2020 Jan 14. [Epub ahead of print] [CrossRef] [PubMed]
  14. Luke TC, Kilbane EM, Jackson JL, et al. Meta-analysis: convalescent blood products for spanish influenza pneumonia: a future H5N1 treatment?. Ann Intern Med. 2006;145:599-609. [CrossRef] [PubMed]
  15. Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011 Feb 15;52(4):447-56. [CrossRef] [PubMed]
  16. Yeh KM, Chiueh TS, Siu LK, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother. 2005 Nov;56(5):919-22. [CrossRef] [PubMed]
  17. US Food & Drug Administration. Recommendations for Investigational COVID-19 Convalescent Plasma. April 8, 2020. Available at:https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma (accessed 4/10/20).

Cite as: Raschke RA. Choosing among unproven therapies for the treatment of life-threatening covid-19 infection: a clinician’s opinion from the beside. Southwest J Pulm Crit Care. 2020;20(4):131-4. doi: https://doi.org/10.13175/swjpcc026-20 PDF 

Wednesday
Apr012020

April 2020 Critical Care Case of the Month: Another Emerging Cause for Infiltrative Lung Abnormalities

Henry W. Luedy, MD1

Sandra L. Till, DO2

Robert A. Raschke, MD1

1HonorHealth Scottsdale Osborn Medical Center

2Banner University Medical Center-Phoenix

Phoenix, AZ USA

 

Editor’s Note: the following case presentation represents a compilation of several patients.

History of Present Illness

The patient is a 27-year-old man who presented to the Emergency Department in late February 2020 with fever, cough, and green sputum production. He was recently in Hawaii where he meant his Asian girlfriend and was “partying hard”. He was intoxicated and had recent nausea and vomiting.

PMH, SH and FH

No significant PMH or FH. He does admit to smoking, marijuana use, THC use, and vaping. 

Physical Examination

  • Vital Signs: BP 111/54 (BP Location: Right arm)  | Pulse 74  | Temp 98.7 °F (37.1 °C) (Oral)  | Resp 18  | Ht 5' 11" (1.803 m)  | Wt 72.6 kg (160 lb)  | SpO2 99%  | BMI 22.32 kg/m²
  • General:  Awake, alert, interactive, no acute distress
  • HEENT:  Anicteric, moist mucosa, trachea midline
  • CV:  RRR
  • Lungs: bilateral lower lobe rhonchi, no wheezing, symmetric expansion
  • Abdomen: Soft, non-tender, non-distended, positive bowel sounds
  • Extremities: no Lower extremity edema, no clubbing, no cyanosis
  • Neuro:  No focal deficits, moves all extremities.
  • Psych:  Appropriate

Which of the following are appropriate at this time? (Click on the correct answer to be directed to the second of six pages.)

  1. CBC
  2. Chest X-ray
  3. Electrolytes
  4. 1 and 3
  5. All of the above

Cite as: Luedy HW, Till SL, Raschke RA. April 2020 critical care case of the month: another emerging cause for infiltrative lung abnormalities. Southwest J Pulm Crit Care. 2020;20(4):119-23. doi: https://doi.org/10.13175/swjpcc018-20 PDF 

Thursday
Mar262020

Further COVID-19 Infection Control and Management Recommendations for the ICU

Robert A. Raschke MD

HonorHealth Osborne Medical Center

Scottsdale, AZ USA

An ad hoc committee of intensivists from the Phoenix area has been meeting via Zoom. They are sharing some of their thoughts and recommendations. Like the previous ICU recommendations published in SWJPCC (1), these are not necessarily evidence-based but based on recent experience and published experience with previous coronavirus outbreaks such as SARS. They are meant to supplement CDC recommendations, not to conflict or restate them.

Infection control outside the rooms of suspected/confirmed COVID-19 patients.

  1. All healthcare workers should be allowed to exercise droplet precautions at all times while at work.
  2. All staff should wear a single surgical mask per day to see all non-COVID patients and for rounds. The mask mitigates droplet spread bidirectionally between patients and HCWs and also helps prevent inadvertent touching of the nose and mouth.
  3. Treat all code patients with airborne / standard / contact precautions
  4. Use MDIs in preference to SVNs (as long as MDIs hold out)
  5. Reduce unnecessary staff and visitor traffic in all patient rooms. Avoid duplication of effort, repeated chest examinations with a stethoscope, in the same day by various doctors and nurses, are unlikely to benefit the care of most patients. Don’t enter the patient’s room without a specific purpose and try to perform multiple required tasks with each room entry.
  6. Hand washing before/after: doorknobs, eating, using a computer, phones, googles.
  7. Phones – use your own cellphone rather than shared landlines. Use speaker phone so you don’t have to touch your face.
  8. Consolidate computer use temporally and geographically. Clean your entire workstation (keyboard, mouse, surrounding desktop) before and after each use.
  9. Keep track of and clean any object on your person that might be contaminated with fomites. This includes any medical instruments that you touch will your gloved hands while seeing patients (stethoscope, pen light, googles, etc). Leave these at work.
  10. When walking down hallways, don’t touch things.

Patients under investigation or with known COVID-19.

  1. Avoid use of high-flow nasal cannula (HFNC) or BiPAP. This in opposition to surviving sepsis campaign recommendations, but data from SARS-CoV-1 show that non-invasive ventilation was associated with increased risk of infection of health care workers (2).
  2. Use metered dose inhalers (MDIs) instead of small volume nebulizers (SVNs).
  3. Use N95 or PAPR during aerosol-producing procedures such as obtaining nasopharyngeal swab for SARS-CoV-2 RT-PCR, HFNC, BiPAP, bronchoscopy, intubation, breaking ventilator circuit for any reason, extubation, tracheostomy.
  4. Consider early intubation. Prepare the bag mask with a high-efficiency particulate air (HEPA) filter and attempt rapid sequence intubation with fiberoptic laryngoscope.
  5. If available, powered air-purifying respirators (PAPR) using P100 HEPA filters (filter >99.97% of 0.3 um particles) should be considered over N-95 (filter 95% of 5 um particles) masks during this high risk procedure based on prior reports of SARS CoV-1 transmission to health care workers (HCW) wearing N95 masks PAPR protects the entire head and neck of the HCW, but requires additional training on donning/duffing.
  6. If unable to wear PAPR, we recommend N95 masks, gowns and gloves, with googles instead of open face shielded masks. Aerosolized particles are more likely to pass around shields into eyes during these high-risk procedures. Also recommend hats and foot protection.
  7. The smallest number of personnel required to safely perform the intubation should be present in the room. Fiberoptic laryngoscopy may be preferred over direct laryngoscopy to reduce exposure to aerosolized particles.
  8. Once intubated:
    1. Be sure all connections in the ventilator circuit are tight and do not break the circuit casually.  
    2. Place HEPA filter on exhalational limb of ventilator.
    3. Obtain bronchial secretions using closed-circuit suction device

Code blue patients.

  1. Use the same precautions as for COVID-19 patients in all patients for whom a code is called.
  2. We recommend aerosol, contact and standard precautions and eye protection for all code team members for all codes - regardless of whether COVID-19 is suspected. There is no time in a code to determine the likelihood the patient has COVID-19, and bag-masking and intubation will aerosolize the patient’s respiratory secretions.
  3. A HEPA filter should be placed between the patient and the bag mask to reduce aerosolization of viral particles into the atmosphere.

Diagnosis of COVID-19.

The sensitivity of RT-PCR for COVID-19 is currently uncertain, but preliminary data suggests it may only be in the range of 70% for nasopharyngeal swabs and respiratory secretions. Bronchoscopy with bronchoalveolar lavage may have sensitivity about 90%, but likely poses a risk to HCWs. This poses difficulty in ruling-out COVID-19. Bayesian logic dictates that the pre-test probability of disease influences interpretation of test results.

During active epidemic in Wuhan, the prevalence of COVID-19 among patients admitted with suspicion of having viral pneumonia was 60% (3). Assuming sensitivities by RT-PCR for NP swab of 70%, respiratory secretions 70%, and BAL 90%, and specificity >95%, the false negative rate for a single NP swab used to rule out  COVID-19 is 31.6% - that is, 31.6% of patients taken out of isolation based on the negative NP swab result would actually be infected with COVID-19. If a second test, for instance respiratory secretions or another NP swab were performed on all patients whose first test was negative, the false negative rate for the series of tests is 8.8% - likely still not good enough to rule a patient out with confidence. If the second test was a BAL, the false negative rate for the series is 3.5%.

In patients with high pre-test probability of COVID-19, a negative NP swab PCR cannot be safely relied-upon to rule out COVID-19. We recommend bronchial secretions be sent for PCR (in addition to NP swab) in all suspected patients who are intubated. A negative CT scan reduces the probability that a hospitalized patient has COVID-19, but will uncommonly be “negative” in hospitalized patients in whom the diagnosis is considered.

Infection control at home during a surge.

  1. Clothes: don’t wear jewelry/watches. Wear hospital-laundered scrubs at work, or take off your work clothes when you get home and throw them in wash machine. Leave your work shoes in your car.
  2. Work equipment: Leave stethoscope, pen, googles and other work-related equipment in a locker at work. Wash your hands and ID badge just before getting in your car to leave the hospital. Leave your ID badge in your car while away from work. Don’t bring your personal computer into work unless absolutely necessary.
  3. Food: Put a Purell dispenser in front of the refrigerator. Stay out of the kitchen. If have your food prepared for you. Eat on paper plates and then throw them out yourself.
  4. Use separate bathroom and sleeping quarters if available.

References

  1. Raschke RA, Till SL, Luedy HW. COVID-19 prevention and control recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):95-7. [CrossRef]
  2. Cheng VC, Chan JF, To KK, Yuen KY. Clinical management and infection control of SARS: lessons learned. Antiviral Res. 2013 Nov;100(2):407-19. [CrossRef] [PubMed]
  3. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020 Mar 11. [Epub ahead of print] [CrossRef] [PubMed]

Cite as: Raschke RA. Further COVID-19 infection control and management recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):100-2. doi: https://doi.org/10.13175/swjpcc020-20 PDF 

Friday
Mar132020

COVID-19 Prevention and Control Recommendations for the ICU

Robert A. Raschke, MD1

Sandra L. Till, DO2

Henry W. Luedy, MD1

1HonorHealth Scottsdale Osborn Medical Center

2Banner University Medical Center-Phoenix

Phoenix, AZ USA

Editor’s Note: We are planning on presenting a case of COVID-19 from Osborn as our case of the month for April. The authors felt we should publish preliminary recommendations now early in the COVID-19 pandemic. The recommendations are not necessarily evidence-based but are based on recent experience and published experience with previous coronavirus outbreaks such as SARS.

Background:

  • COVID-19 is likely somewhat more infectious than influenza (R value in 2-3 range), and can be transmitted by asymptomatic/presymptomatic persons.
  • COVID-19 is already in the community and likely being spread from person to person, Therefore, not all COVID-19 patients will present with a recognized exposure history. Furthermore, fever and pneumonia are not universally present.
  • As of this writing, >3,300 healthcare workers have been confirmed infected globally with 6 deaths.
  • Testing is currently extremely limited in the US with only a minority of potential cases having been tested at this time. This will likely improve over the next few days to weeks. True incidence likely much higher than reported rates of “confirmed COVID-19”.
  • About 15% of patients with confirmed COVID-19 have severe disease and 5% require ICU level care. Mortality rates of approximately 1-2% may be confounded by undertesting, but is currently more than 10 times higher than that of influenza (approx. mortality of 0.05-0.1%) (1).

Infectious disease control issues in the ICU. We recommend droplet, contact and standard precautions when seeing any patient presenting with symptoms of acute upper or lower respiratory tract infection of unknown etiology, regardless whether they meet full CDC criteria for COVID-19 testing. 

Studies during the SARS epidemic showed that intubation, bag-mask ventilation, non-invasive ventilation and tracheostomy procedures were all associated with increased transmission of SARS to healthcare workers (2).

Code arrest. We recommend aerosol, contact and standard precautions and eye protection for all code team members for all codes - regardless of whether COVID-19 is suspected. There is no time in a code to determine the likelihood of the patient having COVID-19, and bag-masking and intubation will aerosolize the patient’s respiratory secretions. A HEPA filter should be placed between the patient and the bag mask to reduce aerosolization of viral particles into the atmosphere.

Elective or semi-elective endotracheal intubation of patients with possible or confirmed COVID-19. If available, powered air-purifying respirators (PAPR) using P100 HEPA filters (filter >99.97% of 0.3 um particles) should be considered over N-95 (filter 95% of 5 um particles) masks during this high-risk procedure based on prior reports of SARS CoV-1 transmission to healthcare workers wearing N95 masks (3). PAPR protects the entire head and neck of the HCW, but requires additional training on donning/duffing.

If unable to wear PAPR, we recommend N95 masks, gowns and gloves, with googles instead of open face shielded masks. Aerosolized particles are more likely to pass around shields into eyes during these high-risk procedures. We also recommend hats and foot protection.

The smallest number of personal required to safely perform the intubation should be present in the room. Fiberoptic laryngoscopy may be preferred over direct laryngoscopy to reduce exposure to aerosolized particles. Once intubated, a HEPA filter should be placed on the exhalational limb of the ventilator.

Non-invasive ventilation and high-flow nasal oxygen. Non-invasive ventilation and high-flow nasal oxygen likely increase the infectivity of COVID-19 by aerosolizing the patient’s respiratory secretions. Consideration should be given to early intubation in patients under investigation or confirmed for COVID-19 (4).

Visitors should not be allowed inside the rooms of such patients except under extreme circumstances and with one-on-one supervision to assure proper use of PPE and handwashing.

Furthermore, we think it is prudent to employ PPE in the rooms of all patients receiving these therapies, since patients with COVID-19 may present atypically (as in the Osborn case). The doors of their rooms should be kept closed, unnecessary traffic in the room reduced, and droplet contact and standard PPE considered, even in patients in whom COVID-19 is not suspected. (This approach has the downside of consuming PPE that might later be in short supply, but has the upside of preserving healthcare workers who also might later be in short supply).

References

  1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020 Feb 24. [Epub ahead of print]. [CrossRef] [PubMed]
  2. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. [CrossRef] [PubMed]
  3. Cheng VC, Chan JF, To KK, Yuen KY. Clinical management and infection control of SARS: lessons learned. Antiviral Res. 2013 Nov;100(2):407-19. [CrossRef] [PubMed]
  4. Zuo MZ, Huang YG, Ma WH, Xue ZG, Zhang JQ, Gong YH, Che L; Chinese Society of Anesthesiology Task Force on Airway Management. Expert recommendations for tracheal intubation in critically ill patients with noval [sic] coronavirus disease 2019. Chin Med Sci J. 2020 Feb 27. [CrossRef] [PubMed]

Cite as: Raschke RA, Till SL, Luedy HW. COVID-19 prevention and control recommendations for the ICU. Southwest J Pulm Crit Care. 2020;20(3):95-7. doi: https://doi.org/10.13175/swjpcc017-20 PDF 

Saturday
Feb292020

Loperamide Abuse: A Case Report and Brief Review

Jaclyn Leong DO1

Kava Afu MS-32

Ella Starobinska MD1

Michael Insel MD3 

1Department of Internal Medicine, 2University of Arizona College of Medicine, and 3Department of Pulmonary and Critical Care

Banner University Medical Center

Tucson, AZ USA 

Case Presentation

A 29-year-old man with unspecified mood disorder, childhood attention deficit hyperactivity disorder, and 2 prior suicide attempts with zolpidem and methadone presented with altered mental status as a transfer from an outside hospital. The patient was found in his truck outside of a grocery store by a bystander who contacted emergency medical services. At the time, he was noted to have seizure-like activity. He had an empty shopping bag in his possession with 14 empty loperamide (Imodium®) bottles, each were supposed to contain 24 tablets. The patient was taken to the nearest medical facility where he was found to be in status epilepticus. After no response to 4 mg intravenous (IV) lorazepam, he was then intubated for airway protection. Propofol infusion was started and a loading dose of levetiracetam 1600 mg IV was administered. Despite medical management, he continued to show evidence of seizure-like activity. Due to the lack of a neurology service at the hospital, the patient was transferred to our academic medical center.

On arrival, patient was intubated, sedated and hemodynamically stable. Sedation was paused to allow a thorough neurologic examination, at which time, he became agitated and was not redirectable. However, he did not exhibit seizure activity. Toxicology service was consulted for suspected loperamide overdose.

Laboratory workup revealed white blood cell count 16,600 µL with neutrophilic predominance (4000-11000), glucose 205 (70- 106 mg/dL), lactic acid of 10 (0.5- 1.7 mmol/L), creatinine kinase 164 (35- 232 IU/L), creatinine 1.39 ( 0.60- 1.50 mg/dL), EGFR 79 (Normal Low >=60). Tylenol and salicylate levels were undetectable. Urine drug screen was negative. Computer tomography (CT) of the head showed no acute intracranial process. CT abdomen/pelvis showed bibasilar airspace consolidations concerning for aspiration pneumonia. Echo revealed left ventricular ejection fraction of 38% with a large-sized apical, septal, anteroseptal, anterior, inferior, posterior, and lateral wall motion abnormality with hypokinesis to akinesis of the segments.

Electrocardiograms (ECG) initially showed QTc and QRS prolongation of 571 ms and 160 ms, respectively. During the initial 24-hours at our hospital, serial EKGs were performed to monitor QTc. Additionally, patient was treated empirically for aspiration pneumonia with ampicillin/sulbactam.

On day two of his hospitalization, his ECG revealed sinus rhythm, with first-degree AV block and QT prolongation greater than 700 ms. Subsequently, torsades de pointes developed, progressing into ventricular tachycardia storm. Several ampules of bicarbonate were administered, and the patient was cardioverted. Dobutamine and magnesium infusions were started and a temporary transvenous pacer was placed with overdrive pacing initiated at 110 bpm. Over the next 24 hours, magnesium and dobutamine were discontinued. The transvenous pacer was removed on hospital day 4 after the patient demonstrated a native rhythm with normal QRS and QT intervals. Levetiracetam was also discontinued, per neurology recommendations. The patient was safely extubated on hospital day 5. He was subsequently evaluated by the psychiatry service who scheduled close follow up after discharge.

Discussion

Loperamide is a nonprescription drug used most commonly to control acute, nonspecific diarrhea, as well as chronic diarrhea associated with inflammatory bowel disease. It acts on mu-opioid receptors in the myenteric plexus to reduce peristaltic activity, thus lengthening bowel transit time and lowering volume and frequency of bowel movements (1). In contrast to other opioid receptor agonists, loperamide has poor absorption from the gastrointestinal tract and limited ability to cross the blood-brain barrier (1,2). Consequently, the drug was deemed low risk for physical dependence and abuse and since 1982 has been sold over-the-counter (OTC) (3).

Despite this labeling, there is an increasing number of reports documenting cases of loperamide misuse and abuse (3). It has only recently been discovered that loperamide is being ingested at supratherapeutic doses (>16 mg/day) for its euphoric effects or for the relief of opioid withdrawal symptoms (3,4). In 2013, online reports of recreational loperamide use at doses of 70-100mg began circulating (3). In the following three years, a 71% increase of loperamide-associated presentations to drug and poison control agencies was reported (3,6).

As a result, the cardiotoxic effects of this drug have come to light, particularly QT-prolongation and QRS- widening (3). At supratherapeutic plasma concentrations, loperamide causes a blockade of the human ether-a-go-go-related gene (hERG) cardiac potassium channel with high affinity, delaying repolarization of the cardiac myocytes and affecting QT-interval and QRS complex (5). Life-threatening dysrhythmias ensue, accounting for the increasing rate of deaths associated with loperamide overdose and toxicity (3). Reports of loperamide-associated cardiac toxicity have increased greatly in number over the past few years and include: at least 21 individual published case reports of loperamide cardiotoxicity, including one published in SWJPCC (3,7); 48 cases of serious loperamide-associated cardiac events, identified in the FDA Adverse Event Reporting System database; and 22 cases of patients found dead with elevated plasma concentrations of loperamide (3).

Loperamide is just one of an increasing number of OTC drugs with potential abuse because of the stimulant or sedative effects. Other OTC drugs commonly known for abuse are dextromethorphan, pseudoephedrine, phenylephrine, diphenhydramine and oxybutynin especially among teenagers, however, loperamide is a less commonly known drug for its opioid abuse. It is important for physicians to be aware of this increasing risk of abuse and significant life-threatening cardiotoxic effects.

References

  1. Killinger JM, Weintraub HS, Fuller BL. Human pharmacokinetics and comparative bioavailability of loperamide hydrochloride. J Clin Pharmacol. 1979;19:211-8. [CrossRef] [PubMed]
  2. Regnard C, Twycross R, Mihalyo M, et al. Loperamide. J Pain Symptom Manage. 2011;42:319-23.[CrossRef] [PubMed]
  3. Wu PE, Juurlink DN. Clinical review: Loperamide toxicity. Annals of Emergency Med. 2017;70:245-52. [CrossRef] [PubMed]
  4. Daniulaityte R, Carlson R, Falck R, et al. "I just wanted to tell you that loperamide will work": a web-based study of extra-medical use of loperamide. Drug Alcohol Depend. 2013;130:241-4. [CrossRef] [PubMed]
  5. Salama A, Levin Y, Jha P, et al. Ventricular fibrillation due to overdose of loperamide, the "poor man's methadone." J Community Hosp Intern Med Perspect. 2017;7(4):222-6. [CrossRef] [PubMed]
  6. Stanciu CN, Gnanasegaram SA. Loperamide, the "Poor Man's Methadone": Brief review. Journal of Psychoactive Drugs. 2017;49:18-21. [CrossRef] [PubMed]
  7. Watkins SA, Smelski G, French RNE, Insel M, Campion J. January 2019 critical care case of the month: A 32-year-old woman with cardiac arrest. Southwest J Pulm Crit Care. 2019;18(1):1-7. [CrossRef]

Cite as: Leong J, Afu K, Starobinska E, Insel M. Loperamide abuse: a case report and brief review. Southwest J Pulm Crit Care. 2020;20(2):73-5. doi: https://doi.org/10.13175/swjpcc007-20 PDF

Page 1 ... 7 8 9 10 11 ... 40 Next 5 Entries »